
Outline

• Part 1: Motivation

• Part 2: Probabilistic Databases

• Part 3: Weighted Model Counting

• Part 4: Lifted Inference for WFOMC

• Part 5: Completeness of Lifted Inference

• Part 6: Query Compilation

• Part 7: Symmetric Lifted Inference Complexity

• Part 8: Open-World Probabilistic Databases

• Part 9: Discussion & Conclusions

Lifted Inference on Asymmetric DB

P(Q1 ∧ Q2) = P(Q1)P(Q2)

P(Q1 ∨ Q2) =1 – (1 – P(Q1))(1 – P(Q2))

P(∃z Q) = 1 – ΠA ∈Domain (1– P(Q[A/z])

P(∀z Q) = ΠA ∈Domain P(Q[A/z]

P(Q1 ∧ Q2) = P(Q1) + P(Q2) - P(Q1 ∨ Q2)

P(Q1 ∨ Q2) = P(Q1) + P(Q2) - P(Q1 ∧ Q2)

Preprocess Q (omitted from this talk; see [Suciu’11]),

then apply these rules (some have preconditions)

Independent

join / union

Independent project

Inclusion/

exclusion

P(¬Q) = 1 – P(Q) negation

Example: Liftable Clause

Q = ∀x∀y S(x,y) ⇒ R(y) =∀y (∃x S(x,y) ⇒ R(y))

Example: Liftable Clause

Q = ∀x∀y S(x,y) ⇒ R(y) =∀y (∃x S(x,y) ⇒ R(y))

P(Q) = ΠB ∈Domain P(∃x S(x,B) ⇒ R(B)) Indep. ∀

Example: Liftable Clause

Q = ∀x∀y S(x,y) ⇒ R(y) =∀y (∃x S(x,y) ⇒ R(y))

P(Q) = ΠB ∈Domain P(∃x S(x,B) ⇒ R(B)) Indep. ∀

P(Q) = ΠB ∈Domain [1 – P(∃x S(x,B))×(1–P(R(b)))] Indep. or:

P(X⇒Y) =

= P(¬X ∨ Y)

= P(X) (1-P(Y))

Example: Liftable Clause

Q = ∀x∀y S(x,y) ⇒ R(y) =∀y (∃x S(x,y) ⇒ R(y))

P(Q) = ΠB ∈Domain P(∃x S(x,B) ⇒ R(B)) Indep. ∀

P(Q) = ΠB ∈Domain [1 – P(∃x S(x,B))×(1–P(R(b)))] Indep. or:

P(X⇒Y) =

= P(¬X ∨ Y)

= P(X) (1-P(Y))

P(Q) = ΠB ∈Domain [1 – (1– ΠA ∈Domain (1-P(S(A,B)))) ×(1 – P(R(B)))]

Indep. ∃

Example: Liftable Clause

Q = ∀x∀y S(x,y) ⇒ R(y) =∀y (∃x S(x,y) ⇒ R(y))

Lookup the probabilitiesin D Lookup the probabilities in D

P(Q) = ΠB ∈Domain P(∃x S(x,B) ⇒ R(B)) Indep. ∀

P(Q) = ΠB ∈Domain [1 – P(∃x S(x,B))×(1–P(R(b)))] Indep. or:

P(X⇒Y) =

= P(¬X ∨ Y)

= P(X) (1-P(Y))

P(Q) = ΠB ∈Domain [1 – (1– ΠA ∈Domain (1-P(S(A,B)))) ×(1 – P(R(B)))]

Indep. ∃

Example: Liftable Clause

Q = ∀x∀y S(x,y) ⇒ R(y) =∀y (∃x S(x,y) ⇒ R(y))

Lookup the probabilitiesin D Lookup the probabilities in D

Runtime = O(n2).

P(Q) = ΠB ∈Domain P(∃x S(x,B) ⇒ R(B)) Indep. ∀

P(Q) = ΠB ∈Domain [1 – P(∃x S(x,B))×(1–P(R(b)))] Indep. or:

P(X⇒Y) =

= P(¬X ∨ Y)

= P(X) (1-P(Y))

P(Q) = ΠB ∈Domain [1 – (1– ΠA ∈Domain (1-P(S(A,B)))) ×(1 – P(R(B)))]

Indep. ∃

Two Questions

• Question 1: Are the lifted rules complete?

– We know that they get stuck on some queries

– Should we add more rules?

• Question 2: Are lifted rules stronger than

grounded?

– Lifted rules can also be grounded

– Any advantage over grounded inference?

Two Questions

• Question 1: Are the lifted rules complete?

– We know that they get stuck on some queries

– Should we add more rules?

• Question 2: Are lifted rules stronger than

grounded?

– Lifted rules can also be grounded

– Any advantage over grounded inference?

Complete for “unate ∀FO” and for “unate ∃FO”

Two Questions

• Question 1: Are the lifted rules complete?

– We know that they get stuck on some queries

– Should we add more rules?

• Question 2: Are lifted rules stronger than

grounded?

– Lifted rules can also be grounded

– Any advantage over grounded inference?

Complete for “unate ∀FO” and for “unate ∃FO”

Strictly stronger than DPLL-based algorithms

FOun = Unate FO

An FO sentence is unate if:

• Negations occur only on atoms

• Every relational symbol R either occurs

only positively, or only negatively

∀FOun (∃FOun) = restrict quantifiers too

Q = ∀x∀y (Smoker(x) ∨¬Friend(x,y))

 ∧∀x∀y (¬Friend(x,y) ∨ Drinker(y))

Q = ∀x∀y (Smoker(x) ∨¬Friend(x,y))

 ∧∀x∀y (Friend(x,y) ∨ ¬Drinker(y))
Unate

Not unate

1. Are the Lifted Rules Complete?

We use complexity classes

• Inference rules: PTIME data complexity

• Some queries: #P-hard data complexity

Dichotomy Theorem for ∀FOun (or ∃FOun)

• If lifted rules succeed, then query in PTIME

• If lifted rules fail, then query is #P-hard

Implies lifted rules are complete for ∀FOun , ∃FOun

Will show in two steps: Small and Big Dichotomy Theorem

NP v.s. #P

Decision Problems:

• SAT = Satisfiability Problem

• SAT is NP-complete [Cook’71]

Counting Problems:

• #SAT = model counting

• #SAT is #P-complete [Valiant’79]

Note: it would be wrong to say “#SAT is NP-complete”

Positive Partitioned 2CNF

1

2

1

2

3

E:

A PP2CNF is:

 F = ∧(i,j) ∈ E (xi  yj)

where E = the edge set of a bipartite graph

F = (x1  y1) ∧ (x2  y1) ∧ (x2  y3) ∧ (x1  y3) ∧ (x2  y2)

Theorem [Provan’83] #PP2CNF is #P-hard

Unliftable Clause

H0= ∀x∀y (R(x) ∨ S(x,y) ∨ T(y))

Independent Project

not possible:

For A1 ≠ A2,

H0[A1/x] and H0[A2/x]

are dependent!

Unliftable Clause

H0= ∀x∀y (R(x) ∨ S(x,y) ∨ T(y))

Theorem. Computing PD(H0) is #P-hard in the size of D

[Dalvi&S.2004]

Independent Project

not possible:

For A1 ≠ A2,

H0[A1/x] and H0[A2/x]

are dependent!

Unliftable Clause

H0= ∀x∀y (R(x) ∨ S(x,y) ∨ T(y))

Proof: PP2CNF: F = (Xi1 ∨ Yj1) ∧ (Xi2 ∨ Yj2) ∧ … reduce #F to computing PD(H0)

By example:

Theorem. Computing PD(H0) is #P-hard in the size of D

[Dalvi&S.2004]

Independent Project

not possible:

For A1 ≠ A2,

H0[A1/x] and H0[A2/x]

are dependent!

Unliftable Clause

H0= ∀x∀y (R(x) ∨ S(x,y) ∨ T(y))

Proof: PP2CNF: F = (Xi1 ∨ Yj1) ∧ (Xi2 ∨ Yj2) ∧ … reduce #F to computing PD(H0)

By example:

F = (X1∨Y1)∧(X1 ∨Y2)∧(X2∨Y2)

Theorem. Computing PD(H0) is #P-hard in the size of D

[Dalvi&S.2004]

Independent Project

not possible:

For A1 ≠ A2,

H0[A1/x] and H0[A2/x]

are dependent!

Unliftable Clause

H0= ∀x∀y (R(x) ∨ S(x,y) ∨ T(y))

Proof: PP2CNF: F = (Xi1 ∨ Yj1) ∧ (Xi2 ∨ Yj2) ∧ … reduce #F to computing PD(H0)

By example:

X Y P

x1 y1 0

x1 y2 0

x2 y2 0

X P

x1 0.5

x2 0.5

Y P

y1 0.5

y2 0.5

R T S
F = (X1∨Y1)∧(X1 ∨Y2)∧(X2∨Y2)

Theorem. Computing PD(H0) is #P-hard in the size of D

[Dalvi&S.2004]

D (tuples not shown have P=1)

Independent Project

not possible:

For A1 ≠ A2,

H0[A1/x] and H0[A2/x]

are dependent!

Unliftable Clause

H0= ∀x∀y (R(x) ∨ S(x,y) ∨ T(y))

Proof: PP2CNF: F = (Xi1 ∨ Yj1) ∧ (Xi2 ∨ Yj2) ∧ … reduce #F to computing PD(H0)

By example:

X Y P

x1 y1 0

x1 y2 0

x2 y2 0

X P

x1 0.5

x2 0.5

Y P

y1 0.5

y2 0.5

R T S

PD(H0) = P(F); hence PD(H0) is #P-hard

F = (X1∨Y1)∧(X1 ∨Y2)∧(X2∨Y2)

Theorem. Computing PD(H0) is #P-hard in the size of D

[Dalvi&S.2004]

D (tuples not shown have P=1)

Independent Project

not possible:

For A1 ≠ A2,

H0[A1/x] and H0[A2/x]

are dependent!

Hierarchical Queries

Fix Q; at(x) = set of atoms (=literals) containing the variable x

R S x
y

T

Non-hierarchical

R S

x

z

Hierarchical

y

Q = ∀x∀y∀z(S(x,y)∨T(x,z)) H0 = ∀x∀y (R(x)∨S(x,y)∨T(y))

Definition Q is hierarchical if forall variables x, y:

 at(x) ⊆at(y) or at(x) ⊇ at(y) or at(x) ∩ at(y) = ∅

The Small Dichotomy Theorem

Checking “Q is hierarchical” is in AC0 (expression complexity)

Theorem Let Q be one clause, with no repeated symbols

• If Q is hierarchical, then PD(Q) is in PTIME.

• If Q is not hierarchical then PD(Q) is #P-hard.

[Dalvi&S.04]

The Small Dichotomy Theorem

Checking “Q is hierarchical” is in AC0 (expression complexity)

Theorem Let Q be one clause, with no repeated symbols

• If Q is hierarchical, then PD(Q) is in PTIME.

• If Q is not hierarchical then PD(Q) is #P-hard.

[Dalvi&S.04]

Fact: Any non-hierarchical Q in ∀FOun (∃FOun) is #P-hard

[Dalvi,S.’12]

Next: consider only hierarchical queries in ∀FOun (∃FOun)

Clause with Repeated Symbols

QJ = ∀x1∀y1∀x2∀y2 (S(x1,y1) ∨ R(y1) ∨ S(x2,y2) ∨T(y2))

Clause with Repeated Symbols

QJ = ∀x1∀y1∀x2∀y2 (S(x1,y1) ∨ R(y1) ∨ S(x2,y2) ∨T(y2))

Q1 Q2

= [∀x1∀y1S(x1,y1)∨R(y1)] ∨ [∀x2∀y2S(x2,y2)∨T(y2)]

Clause with Repeated Symbols

QJ = ∀x1∀y1∀x2∀y2 (S(x1,y1) ∨ R(y1) ∨ S(x2,y2) ∨T(y2))

P(QJ) = P(Q1) + P(Q2) - P(Q1 ∧ Q2)

PTIME (have seen already) PTIME (have seen before)

Q1 Q2

= [∀x1∀y1S(x1,y1)∨R(y1)] ∨ [∀x2∀y2S(x2,y2)∨T(y2)]

Clause with Repeated Symbols

QJ = ∀x1∀y1∀x2∀y2 (S(x1,y1) ∨ R(y1) ∨ S(x2,y2) ∨T(y2))

P(QJ) = P(Q1) + P(Q2) - P(Q1 ∧ Q2)

PTIME (have seen already) PTIME (have seen before)

Q1 Q2

= [∀x1∀y1S(x1,y1)∨R(y1)] ∨ [∀x2∀y2S(x2,y2)∨T(y2)]

Q1 ∧ Q2 = ∀y [(∀x1S(x1,y)∨R(y)) ∧ (∀x2S(x2,y))∨T(y)]

 = ∀y [∀x S(x,y)∨(R(y)∧T(y))]

y = y1 = y2

Clause with Repeated Symbols

QJ = ∀x1∀y1∀x2∀y2 (S(x1,y1) ∨ R(y1) ∨ S(x2,y2) ∨T(y2))

P(Q1 ∧ Q2) = ΠB ∈Domain P[∀x.S(x,B) ∨(R(B) ∧ T(B))] = …etc

P(QJ) = P(Q1) + P(Q2) - P(Q1 ∧ Q2)

PTIME (have seen already) PTIME (have seen before)

Q1 Q2

= [∀x1∀y1S(x1,y1)∨R(y1)] ∨ [∀x2∀y2S(x2,y2)∨T(y2)]

Q1 ∧ Q2 = ∀y [(∀x1S(x1,y)∨R(y)) ∧ (∀x2S(x2,y))∨T(y)]

 = ∀y [∀x S(x,y)∨(R(y)∧T(y))]

Runtime = O(n2).

y = y1 = y2

Unliftable Queries Hk

H0= R(x)∨S(x,y)∨T(y)

Will drop ∀ to reduce clutter

H1= [R(x0)∨S(x0,y0)] ∧ [S(x1,y1)∨T(y1)]

Every Hk, k≥1

is hierarchical

Unliftable Queries Hk

H0= R(x)∨S(x,y)∨T(y)

H2= [R(x0)∨S1(x0,y0)] ∧ [S1(x1,y1)∨S2(x1,y1)] ∨ [S2(x2,y2)∨T(y2)]

Will drop ∀ to reduce clutter

H1= [R(x0)∨S(x0,y0)] ∧ [S(x1,y1)∨T(y1)]

Every Hk, k≥1

is hierarchical

Unliftable Queries Hk

H0= R(x)∨S(x,y)∨T(y)

H2= [R(x0)∨S1(x0,y0)] ∧ [S1(x1,y1)∨S2(x1,y1)] ∨ [S2(x2,y2)∨T(y2)]

Will drop ∀ to reduce clutter

H1= [R(x0)∨S(x0,y0)] ∧ [S(x1,y1)∨T(y1)]

. . .

H3= [R(x0)∨S1(x0,y0)]∧[S1(x1,y1)∨S2(x1,y1)]∧[S2(x2,y2)∨S3(x2,y2)]∧[S3(x3,y3)∨T(y3)]

Every Hk, k≥1

is hierarchical

Unliftable Queries Hk

H0= R(x)∨S(x,y)∨T(y)

H2= [R(x0)∨S1(x0,y0)] ∧ [S1(x1,y1)∨S2(x1,y1)] ∨ [S2(x2,y2)∨T(y2)]

Will drop ∀ to reduce clutter

H1= [R(x0)∨S(x0,y0)] ∧ [S(x1,y1)∨T(y1)]

. . .

H3= [R(x0)∨S1(x0,y0)]∧[S1(x1,y1)∨S2(x1,y1)]∧[S2(x2,y2)∨S3(x2,y2)]∧[S3(x3,y3)∨T(y3)]

Theorem. [Dalvi&S’12] Every query Hk is #P-hard

Every Hk, k≥1

is hierarchical

A Closer Look at Hk

H3= [R(x0)∨S1(x0,y0)] ∧ [S1(x1,y1)∨S2(x1,y1)] ∧ [S2(x2,y2)∨S3(x2,y2)]∧[S3(x3,y3)∨T(y3)]

If we drop any one clause  in PTIME

Independent join

A Closer Look at Hk

H3= [R(x0)∨S1(x0,y0)] ∧ [S1(x1,y1)∨S2(x1,y1)] ∧ [S2(x2,y2)∨S3(x2,y2)]∧[S3(x3,y3)∨T(y3)]

If we drop any one clause  in PTIME

Independent join

If we replace T(y3) with T(x3) then in PTIME

[R(x0)∧S1(x0,y0)] ∧[S1(x1,y1)∨S2(x1,y1)] ∧[S2(x2,y2)∨S3(x2,y2)] ∧[S3(x3,y3)∨T(x3)]

Independent project on x0 = x1 = x2 = x3

Cancellations

QW = [(R(x0)∨S1(x0,y0)) ∧ (S2(x2,y2)∨S3(x2,y2))] ∨ /* Q1 */

 [(R(x0)∨S1(x0,y0)) ∧ (S3(x3,y3)∨T(y3))] ∨ /* Q2 */

 [(S1(x1,y1)∨S2(x1,y1)) ∧ (S3(x3,y3)∨T(y3))] /* Q3 */

QW = a Boolean expression

over the clauses in H3 Yet, in PTIME

Cancellations

P(QW) = P(Q1) + P(Q2) + P(Q3) +

 – P(Q1 ∧ Q2) – P(Q2 ∧ Q3) – P(Q1 ∧ Q3)

 + P(Q1 ∧ Q2 ∧ Q3)

Also = H3

= H3 (hard !)

QW = [(R(x0)∨S1(x0,y0)) ∧ (S2(x2,y2)∨S3(x2,y2))] ∨ /* Q1 */

 [(R(x0)∨S1(x0,y0)) ∧ (S3(x3,y3)∨T(y3))] ∨ /* Q2 */

 [(S1(x1,y1)∨S2(x1,y1)) ∧ (S3(x3,y3)∨T(y3))] /* Q3 */

QW = a Boolean expression

over the clauses in H3 Yet, in PTIME

Cancellations

P(QW) = P(Q1) + P(Q2) + P(Q3) +

 – P(Q1 ∧ Q2) – P(Q2 ∧ Q3) – P(Q1 ∧ Q3)

 + P(Q1 ∧ Q2 ∧ Q3)

Also = H3

= H3 (hard !)

QW = [(R(x0)∨S1(x0,y0)) ∧ (S2(x2,y2)∨S3(x2,y2))] ∨ /* Q1 */

 [(R(x0)∨S1(x0,y0)) ∧ (S3(x3,y3)∨T(y3))] ∨ /* Q2 */

 [(S1(x1,y1)∨S2(x1,y1)) ∧ (S3(x3,y3)∨T(y3))] /* Q3 */

Need to cancel terms to compute the query in PTIME

Using Mobius’ function in the the lattice of Q’s minterms [Suciu’11]

QW = a Boolean expression

over the clauses in H3 Yet, in PTIME

The Big Dichotomy Theorem

Dichotomy Theorem [Dalvi’12] Fix a ∀FOun query Q.

1. If Q is liftable, then P(Q) is in PTIME

2. If Q is not liftable, then P(Q) is #P-complete

Note Original formulation for UCQ;

Immediate extension to ∀FOun and for ∃FOun

Call Q liftable if the rules don’t get stuck.

Discussion

• This answers Question 1: lifted inference
rules are complete for ∀FOun (and for
∃FOun)

• Notice: we did not use any symmetries!

• Beyond unate FO? Conjectures:

– Rules+resolution* complete for CNF-FO

– No complete set of rules for FO
* Q = ∀x∀y (R(x)∨S(x,y)) ∧∀x∀y (¬S(x,y) ∨T(y))

 = ∀x∀y (R(x)∨S(x,y)) ∧∀x∀y (¬S(x,y) ∨T(y)) ∧ ∀x∀y (R(x) ∨T(y))

