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Lifted Inference on Asymmetric DB 

P(Q1 ∧ Q2) = P(Q1)P(Q2) 

P(Q1 ∨ Q2) =1 – (1 –  P(Q1))(1 – P(Q2)) 

P(∃z Q) = 1 – ΠA ∈Domain (1–  P(Q[A/z]) 

P(∀z Q) = ΠA ∈Domain  P(Q[A/z] 

P(Q1 ∧ Q2) = P(Q1) + P(Q2) - P(Q1 ∨ Q2) 

P(Q1 ∨ Q2) = P(Q1) + P(Q2) - P(Q1 ∧ Q2) 

Preprocess Q (omitted from this talk; see [Suciu’11]),  

then apply these rules (some have preconditions) 

Independent  

join / union 

Independent project 

Inclusion/ 

exclusion 

P(¬Q) = 1 – P(Q) negation 
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Two Questions 

• Question 1: Are the lifted rules complete? 
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Two Questions 

• Question 1: Are the lifted rules complete? 

– We know that they get stuck on some queries 

– Should we add more rules? 

 

• Question 2: Are lifted rules stronger than 

grounded? 

– Lifted rules can also be grounded 

– Any advantage over grounded inference? 

Complete for  “unate ∀FO” and for “unate ∃FO” 

Strictly stronger than DPLL-based algorithms 



FOun  = Unate FO 

An FO sentence is unate if: 

• Negations occur only on atoms 

• Every relational symbol R either occurs 

only positively, or only negatively 

 

∀FOun  (∃FOun)  = restrict quantifiers too 

Q = ∀x∀y (Smoker(x) ∨¬Friend(x,y)) 

    ∧∀x∀y (¬Friend(x,y) ∨ Drinker(y)) 

Q = ∀x∀y (Smoker(x) ∨¬Friend(x,y)) 

    ∧∀x∀y (Friend(x,y) ∨ ¬Drinker(y)) 
Unate 

Not unate 



1. Are the Lifted Rules Complete? 

We use complexity classes 

• Inference rules: PTIME data complexity 

• Some queries: #P-hard data complexity 

 

 

Dichotomy Theorem for  ∀FOun  (or ∃FOun) 

• If lifted rules succeed, then query in PTIME 

• If lifted rules fail, then query is #P-hard 

 

Implies lifted rules are complete for ∀FOun , ∃FOun 

Will show in two steps:  Small and Big Dichotomy Theorem 



NP v.s. #P 

Decision Problems: 

• SAT = Satisfiability Problem 

• SAT is NP-complete [Cook’71] 

 

Counting Problems: 

• #SAT = model counting 

• #SAT is #P-complete  [Valiant’79] 

Note: it would be wrong to say “#SAT is NP-complete” 



Positive Partitioned 2CNF 

1 

2 

1 

2 

3 

E: 

A PP2CNF is:  

     F = ∧(i,j) ∈ E (xi  yj) 

where E = the edge set of a bipartite graph 

F  =  (x1  y1) ∧ (x2  y1) ∧ (x2  y3) ∧ (x1  y3) ∧ (x2  y2) 

Theorem [Provan’83]  #PP2CNF is #P-hard   
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Hierarchical Queries 

Fix Q;  at(x) = set of atoms (=literals) containing the variable x 

R S x 
y 

T 

Non-hierarchical 

R S 

x 

z 

Hierarchical 

y 

Q = ∀x∀y∀z(S(x,y)∨T(x,z)) H0 = ∀x∀y (R(x)∨S(x,y)∨T(y)) 

Definition  Q is hierarchical  if forall variables x, y: 

            at(x) ⊆at(y)   or   at(x) ⊇ at(y)   or   at(x) ∩ at(y) = ∅ 



The Small Dichotomy Theorem 

Checking “Q is hierarchical” is in AC0 (expression complexity) 

Theorem Let Q be one clause, with no repeated symbols 

• If Q is hierarchical, then PD(Q) is in PTIME. 

• If Q is not hierarchical then PD(Q) is #P-hard. 

[Dalvi&S.04] 



The Small Dichotomy Theorem 

Checking “Q is hierarchical” is in AC0 (expression complexity) 

Theorem Let Q be one clause, with no repeated symbols 

• If Q is hierarchical, then PD(Q) is in PTIME. 

• If Q is not hierarchical then PD(Q) is #P-hard. 

[Dalvi&S.04] 

Fact: Any non-hierarchical Q in ∀FOun (∃FOun) is #P-hard 

[Dalvi,S.’12] 

Next: consider only hierarchical queries in ∀FOun (∃FOun)  
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Clause with Repeated Symbols 

QJ = ∀x1∀y1∀x2∀y2  (S(x1,y1) ∨ R(y1) ∨ S(x2,y2) ∨T(y2)) 

P(Q1 ∧ Q2) = ΠB ∈Domain  P[∀x.S(x,B) ∨(R(B) ∧ T(B))] = …etc 

P(QJ)   =   P(Q1) + P(Q2) - P(Q1 ∧ Q2)  

PTIME (have seen already) PTIME (have seen before) 

Q1  Q2 

= [∀x1∀y1S(x1,y1)∨R(y1)]  ∨  [∀x2∀y2S(x2,y2)∨T(y2)] 
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Runtime = O(n2).  

y = y1 = y2 
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Theorem. [Dalvi&S’12] Every query Hk is #P-hard 

Every Hk, k≥1 

is hierarchical 
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A Closer Look at Hk 

H3= [R(x0)∨S1(x0,y0)] ∧ [S1(x1,y1)∨S2(x1,y1)] ∧ [S2(x2,y2)∨S3(x2,y2)]∧[S3(x3,y3)∨T(y3)] 

If we drop any one clause  in PTIME 

Independent join 

If we replace T(y3) with T(x3) then in PTIME 

[R(x0)∧S1(x0,y0)] ∧[S1(x1,y1)∨S2(x1,y1)] ∧[S2(x2,y2)∨S3(x2,y2)] ∧[S3(x3,y3)∨T(x3)] 

Independent project on x0 = x1 = x2 = x3 
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QW = a Boolean expression 

over the clauses in H3  Yet, in PTIME 
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Cancellations 

P(QW) =   P(Q1) + P(Q2) + P(Q3) + 

            –  P(Q1 ∧ Q2) – P(Q2 ∧ Q3) – P(Q1 ∧ Q3)  

             +  P(Q1 ∧ Q2 ∧ Q3) 

Also = H3 

= H3 (hard !) 

QW = [(R(x0)∨S1(x0,y0))    ∧     (S2(x2,y2)∨S3(x2,y2))] ∨    /* Q1 */ 

         [(R(x0)∨S1(x0,y0))     ∧    (S3(x3,y3)∨T(y3))]       ∨    /* Q2 */ 

         [(S1(x1,y1)∨S2(x1,y1))  ∧  (S3(x3,y3)∨T(y3))]              /* Q3 */ 

Need to cancel terms to compute the query in PTIME 

Using Mobius’ function in the the lattice of Q’s minterms [Suciu’11] 

QW = a Boolean expression 

over the clauses in H3  Yet, in PTIME 



The Big Dichotomy Theorem 

Dichotomy Theorem [Dalvi’12] Fix a ∀FOun  query Q. 

1. If Q is liftable, then P(Q) is in PTIME 

2. If Q is not liftable, then P(Q) is #P-complete 

Note Original formulation for UCQ; 

Immediate extension to ∀FOun  and for ∃FOun  

Call Q liftable if the rules don’t get stuck. 



Discussion 

• This answers Question 1: lifted inference 
rules are complete for ∀FOun  (and for 
∃FOun) 

 

• Notice: we did not use any symmetries! 

 

• Beyond unate FO?  Conjectures: 

– Rules+resolution* complete for CNF-FO 

– No complete set of rules for FO 
*  Q = ∀x∀y (R(x)∨S(x,y)) ∧∀x∀y (¬S(x,y) ∨T(y)) 

       = ∀x∀y (R(x)∨S(x,y)) ∧∀x∀y (¬S(x,y) ∨T(y)) ∧ ∀x∀y (R(x) ∨T(y)) 


